

2021 Survey on Technological Cooperation among China-Japan-Korea

Objective

S

فالراه كنهر أواليون وتبعالهم

Page2

The survey was intended to

- identify changes and trends on the perception of technical cooperation among the three countries
- understand the views and opinions of researchers in the three countries on a particular field of science and technology (MEMS this year)
- provide a cooperative platform for mutual development of the East Asia to resolve common issues laid in the region

Respondents

224 valid questionnaires were collected

More than 50% of the questions were answered

Profession	China	Japan	Korea	Total
Professor	31(56.3%)	25(61.0%)	74(57.8%)	130(58.0%)
Researcher	16(29.1%)	1(2.4%)	17(13.3%)	34(15.2%)
Business employer or employee	5(9.1%)	12(29.3%)	32(25.0%)	49(21.9%)
Government official or public sector employee	3(5.5%)	1(2.4%)	1(0.8%)	5(2.0%)
Others	_0(0.0%)	2(4.9%)	4(3.1%)	6(2.9%)
Total	55(24.6%)	41(18.3%)	128(57.1%)	224

خالها والمتعالية فالمراجع والمعالي

Page3

Others: retired professor, government executive, etc.

Respondents

Specialty	China	Japan	Korea	Total
Civil and environmental engineering	11(20.0%)	5(12.3%)	9(7.0%)	25(11.2%)
Mechanical engineering	4(7.3%)	6(14.6%)	31(24.2%)	41(18.3%)
Technology management	3(5.5%)	7(17.1%)	5(3.9%)	15(6.7%)
Material and energy resource engineering	12(21.8%)	3(7.3%)	29(22.7%)	44(19.6%)
Electric/electronic engineering & ICT	8(14.5%)	11(26.8%)	22(17.2%)	41(18.3%)
Chemical and biomedical engineering	5(9.1%)	3(7.3%)	24(18.7%)	32(14.3%)
Others	12(21.8%)	6(14.6%)	8(6.3%)	26(11.6%)
Total	55(24.6%)	41(18.3%)	128(57.1%)	224

Others: Biomedical Engineering, Chemistry, Aerospace Engineering, Industry Engineering, Medicine, Surgery, Instrument Science and Technology, etc.

ومغالية وأرتب ويعلقه

Respondents

research experience	China	Japan	Korea	Total		
Less than 5 years	2(3.6%)	1(2.5%)	5(3.9%)	8(3.6%)		
5-10 years	3(5.5%)	0(0.0%)	2(1.6%)	5(2.2%)		
10-20 years	9(16.4%)	3(7.3%)	4(3.1%)	16(7.1%)		
More than 20 years	41(74.5%)	34(82.9%)	114(89.1%)	189(84.4)		
Unanswered	0(0.0%)	3(7.3%)	3(2.3%)	6(2.7%)		
Age	China	Japan	Korea	Total		
35-49	14(25.5%)	2(4.9%)	3(2.3%)	19(8.5%)		
50-59	12(21.8%)	11(26.8%)	36(28.1%)	59(26.3%)		
60-69	20(36.4%)	12(29.3%)	74(57.8%)	106(47.3%)		
70-79	7(12.7%)	11(26.8%)	8(6.3%)	26(11.6%)		
80 and older	2(3.6%)	5(12.2%)	5(3.9%)	12(5.3%)		
Unanswered	0(0.0%)	0(0.0%)	2(1.6%)	2(1.0%)		
Total	55(24.6%)	41(18.3%)	128(57.1%)	224		

Technological

cooperation

Expectations on the Benefit of Cooperation index

cooperation

Level of Cooperation in terms of Quantity index

と CAE

Technological

cooperation

Level of Cooperation in terms of Quality index

<u> *國工程院</u> CAE

MEMS for automobiles

	China	Japan	Korea	Total	Weight1
I don't know	8(14.6%)	2(4.9%)	4(3.1%)	14(6.3%)	0.6
I'm not sure	24(43.6%)	10(24.4%)	44(34.4%)	78(34.8%)	0.7
I know something about it	22(40.0%)	24(58.5%)	73(57.0%)	119(53.1%)	0.8
I know it very well and my work has some relevance	1(1.8%)	2(4.9%)	6(4.7%)	9(4%)	0.9
I know it very well and my work is closely related	0(0.0%)	2(4.9%)	1(0.8%)	3(1.3%)	1.0
Unanswered	0(0.0%)	1(2.4%)	0(0.0%)	1(0.5%)	0.5
Total	55(24.6%)	41(18.3%)	128(57.1%)	224	

survey

أمرضا الطناير أبالين وتبعلتهم

Page12

Among the applications of MEMS listed below, which do you think are the most important for automotive safety? (Choose 3 items and rank them in descending order of importance)

Page13

	Percentage	China	Japan	Korea
	Electronic Stability Program (ESP)	1 80.0%	(1) 63.4%	173.4%
the second of	Tire Pressure Monitoring System (TPMS)	2 50.9%	4 29.3%	4 23.4%
	Engine management system	3 47.3%	246.3%	2 56.3%
	Power steering system	(4) 27.3%	336.6%	332.0%
	Transmission Control Unit (TCU)	21.8%	5 17.1%	5 18.0%
	Electrical Park Brake System (EPB)	10.9%	9.8%	10.2%
	Hill-launch Assist System (HAS)	1.8%	0.0%	0.8%
	Electronic Control Suspension System (ECS)	7.3%	14.6%	5 18.0%
	Side airbag triggering	5 25.5%	9.8%	7.0%
	Anti-theft detection system	3.6%	4.9%	3.1%
	Tank pressure monitoring	1.8%	4.9%	2.3%
	Inertial navigation	1.8%	14.6%	13.3%
	In-car heartbeat detection	3.6%	5 17.1%	0.8%
	Others	1.8%	0.0%	0.0%

Page14

		C	hina	Japan	Korea	
Electronic Stability Pro	gram (ESP)	1	7.71	1 5.61	1 6.72	
Tire Pressure Monitoring	System (TPMS)	2	4.11	4 2.34	4 1.80	
Engine managemer	nt system	3	3.60	2 4.15	2 4.86	1
Power steering s	ystem	6	1.82	3 2.78	3 2.30	
Transmission Control	Unit (TCU)		1.49	5 1.27	1.20	
Electrical Park Brake S	ystem (EPB)		0.76	0.63	0.69	
Hill-launch Assist Sys	tem (HAS)		0.15	0.00	0.05	
Electronic Control Suspens	ion System (ECS)		0.44	1.02	5 1.22	
Side airbag trigg	Jering	4	1.96	0.78	0.48	
Anti-theft detection	n system		0.25	0.29	0.19	
Tank pressure mo	nitoring		0.11	0.34	0.19	
Inertial naviga	tion		0.18	1.12	0.97	
In-car heartbeat d	etection		0.25	1.07	0.05	
Others		100	0.18	0.00	0.00	ę.

Page15

IF2	China	Japan	Korea
Electronic Stability Program (ESP)	1 5.63	1 4.43	1 5.21
Tire Pressure Monitoring System (TPMS)	2.97	4 1.86	4 1.40
Engine management system	3 2.65	2 3.19	2 3.70
Power steering system	5 1.36	3 2.22	3 1.80
Transmission Control Unit (TCU)	1.16	0.93	0.90
Electrical Park Brake System (EPB)	0.52	0.47	0.54
Hill-launch Assist System (HAS)	0.10	0.00	0.03
Electronic Control Suspension System (ECS)	0.32	0.79	(5) 0.97
Side airbag triggering	(4) 1.45	0.66	0.38
Anti-theft detection system	0.19	0.22	0.15
Tank pressure monitoring	0.09	0.27	0.14
Inertial navigation	0.11	(5) 0.95	0.77
In-car heartbeat detection	0.20	0.84	0.04
Others	0.11	0.00	0.00

SUTVEY Among the applications of MEMS listed in the previous question, which do you think are the most important for automotive comfort? (Choose 3 items and rank them in descending order of importance)

For a respondent's answer:	Importance factors were then calculated as:
1 st Choice 1.0	$IF1_{\alpha} = \left(\sum_{1}^{T} Weight2\right) \times 10 \div T$
3 rd Choice 0.8	$IF2_{\alpha} = \left(\sum_{1} Weight1 \times Weight2\right) \times 10 \div T$
Others 0	α=A, B, C,, M, N T: the number of respondents

ومغابلها فارتكوا وتعاقم

Page17

Percentage	China	Japan	Korea
Electronic Stability Program (ESP)	1 72.7%	243.9%	142.2%
Tire Pressure Monitoring System (TPMS)	3 30.9%	5 26.8%	5 24.2%
Engine management system	5 27.3%	5 26.8%	4 26.6%
Power steering system	30.9%	3 36.6%	241.4%
Transmission Control Unit (TCU)	2 34.5%	4 29.3%	18.0%
Electrical Park Brake System (EPB)	18.2%	9.8%	19.5%
Hill-launch Assist System (HAS)	14.5%	4.9%	3.1%
Electronic Control Suspension System (ECS)	5 27.3%	1 46.3%	335.9%
Side airbag triggering	3.6%	2.4%	5.5%
Anti-theft detection system	0.0%	14.6%	15.6%
Tank pressure monitoring	0.0%	0.0%	0.8%
Inertial navigation	7.3%	9.8%	12.5%
In-car heartbeat detection	3.6%	7.3%	3.9%
Others	1.8%	0.0%	0.8%

Page18

an a	China	Japan	Korea
Electronic Stability Program (ESP)	(1) 6.18	1 3.85	1 3.75
Tire Pressure Monitoring System (TPMS)	3 2.55	5 2.34	5 1.95
Engine management system	5 2.36	5 2.34	4 2.28
Power steering system	4 2.40	3 2.83	2 3.31
Transmission Control Unit (TCU)	2 2.95	4 2.39	1.39
Electrical Park Brake System (EPB)	1.38	0.63	1.55
Hill-launch Assist System (HAS)	1.09	0.34	0.27
Electronic Control Suspension System (ECS)	2.07	2 3.71	3 2.64
Side airbag triggering	0.22	0.20	0.34
Anti-theft detection system	0.00	0.93	1.08
Tank pressure monitoring	0.00	0.00	0.08
Inertial navigation	0.51	0.63	1.03
In-car heartbeat detection	0.25	0.54	0.27
Others	0.18	0.00	0.05

Page19

IF2	China	Japan	Korea
Electronic Stability Program (ESP)	4.51	2 3.01	1 2.89
Tire Pressure Monitoring System (TPMS)	4 1.80	1.79	5 1.50
Engine management system	5 1.71	5 1.80	4 1.77
Power steering system	3 1.83	3 2.22	2.57
Transmission Control Unit (TCU)	2.25	4 1.81	1.06
Electrical Park Brake System (EPB)	1.01	0.49	1.18
Hill-launch Assist System (HAS)	0.78	0.29	0.22
Electronic Control Suspension System (ECS)	1.53	1 3.03	3 2.09
Side airbag triggering	0.16	0.16	0.27
Anti-theft detection system	0.00	0.79	0.82
Tank pressure monitoring	0.00	0.00	0.07
Inertial navigation	0.40	0.54	0.79
In-car heartbeat detection	0.19	0.43	0.21
Others	0.11	0.00	0.03

ومخالقا فالبناء أوأجرا والعاقي

Page20

SUTVEY Among the application trends of MEMS listed below, which do you think will be marketable in the next 10 years? (Multiple choice)

	China	Japan	Korea
External environment monitoring	3 65.5%	3 39.0%	2 41.4%
New energy system status monitoring	4 58.2%	2 41.5%	4 30.5%
State monitoring of vehicle occupants	2 69.1%	3 39.0%	3 39.8%
Passenger-vehicle information interaction	1 74.5%	1 46.3%	1 51.6%
Intelligent noise reduction in the car	(5) 34.5%	3 19.5%	(5) 16.4%
Others	0.0%	2.4%	0.0%

Others: adaptive headlight beam steering, etc.

For automotive safety, most important MEMS applications are:

- Electronic Stability Program (ESP)
- Engine management system

- Tire Pressure Monitoring System (TPMS) Power steering system
- For automotive comfort, most important MEMS applications are:
 - Electronic Stability Program (ESP)
 - Engine management system
 - Transmission Control Unit (TCU)

- Tire Pressure Monitoring System
- (TPMS) Power steering system
- Electronic Control Suspension System (ECS)

Applications that will be marketable in the next 10 years:

- External environment monitoring
- New energy system status monitoring
- State monitoring of vehicle occupants Passenger-vehicle information interaction

Page22

MEMS for healthcare

	China	Japan	Korea	Total	Weight1
I don't know	7(12.8%)	3(7.3%)	10(7.8%)	20(8.9%)	0.6
I'm not sure	28(50.9%)	13(31.7%)	53(41.4%)	94(42.0%)	0.7
I know something about it	17(30.9%)	19(46.3%)	58(45.3%)	94(42.0%)	0.8
I know it very well and my work has some relevance	2(3.6%)	3(7.3%)	4(3.1%)	9(4.0%)	0.9
I know it very well and my work is closely related	1(1.8%)	2(4.9%)	0(0.0%)	3(1.3%)	1.0
Unanswered	0(0.0%)	1(2.5%)	3(2.4%)	4(1.8%)	0.5
Total	55(24.6%)	41(18.3%)	128(57.1%)	224	

SUrvey Which factors do you think are the most important to increase the life expectancy of the population? (Choose 3 items and rank them in descending order of importance)

ومحفاة القيادين أراجي وتبهلتهم

Page24

survey

Percentage	China	Japan	Korea
Drug development	1 70.9%	256.1%	43.0%
Rapid pathologic diagnosis	45.5%	4 39.0%	1 73.4%
Biomedical research	3 49.1%	343.9%	(5) 30.5%
Daily health monitoring	2 61.8%	173.2%	2 49.2%
Artificial organs	(5) 30.9%	26.8%	3 46.1%
Noninvasive/minimally invasive surgery	18.2%	4 39.0%	28.1%
Others	3.6%	2.4%	0.8%

Others: traditional medicine development, patient monitoring etc.

Page25

survey

IF1	China	Japan	Korea
Drug development	1 5.78	2 4.20	④ 3.47
Rapid pathologic diagnosis	3.82	④ 3.07	1 6.34
Biomedical research	3 3.85	3 3.80	5 2.38
Daily health monitoring	2 5.05	 6.59 	2 4.03
Artificial organs	5 2.58	1.95	3 3.50
Noninvasive/minimally invasive surgery	1.27	5 2.73	1.94
Others	0.29	0.15	0.05

Others: traditional medicine development, patient monitoring etc.

survey

ومحاولة والمتحدث أتكرون وتعطيهم

Page26

Among the following applications of MEMS (in vitro), which one do you think is the most promising?

Importance factors were calculated as:

$$IF3_{\alpha} = \left(\sum_{1}^{T} Weight1\right) \times 10 \div T$$

$$\alpha = A, B, C, D$$

To the number of respondents

T: the number of respondents

Page27

survey

Percentage	China	Japan	Korea
Biosensors	2 32.7%	153.7%	239.1%
Biochemical analysis and disease diagnosis	1 41.8%	231.7%	146.9%
Tissue engineering	3 23.6%	3 9.8%	3.9%
Others	1.8%	0.0%	3 5.5%
Unanswered	0.0%	4.9%	4.7%

Others: micro robots, etc.

Page28

IF3	China	Japan	Korea
Biosensors	2.36	1 4.10	2.92
Biochemical analysis and disease diagnosis	3.11	2.51	3.54
Tissue engineering	3 1.71	3 0.76	0.29
Others	0.13	0.00	3 0.39
Unanswered	0.00	0.00	0.00

Among the following applications of MEMS (wearable/implantable), which ones do you think are the most promising? (Choose 3 items and rank them in descending order of importance)

For a respondent' s answer:	Importance factors were then calculated as:
Weight21st Choice1.02nd Choice0.83rd Choice0.6Others0	$IF1_{\alpha} = \left(\sum_{1}^{T} Weight2\right) \times 10 \div T$ $IF2_{\alpha} = \left(\sum_{1}^{T} Weight1 \times Weight2\right) \times 10 \div T$ $\alpha = A, B, C,, H, I$ T: the number of respondents

ومغابلا بالمته أبأجل بالملقي

Page30

Percentage	China	Japan	Korea
Intrusive testing	3 54.5%	22.0%	2 53.1%
Minimally invasive surgery	(1) 69.1%	343.9%	3 43.8%
Miniature drug delivery injection system	5 18.2%	2 46.3%	1 57.0%
Micro artificial organs	41.8%	41.5%	4 35.2%
Articles for the disabled	7.3%	5 24.4%	6.3%
Daily health parameters monitoring	2 60.0%	1 65.9%	2 53.1%
Flexible chips	5 18.2%	22.0%	17.2%
Body energy harvesting	1.8%	19.5%	2.3%
Others	1.8%	0.0%	0.0%

Page31

IF1	China	Japan	Korea
Intrusive testing	2 4.73	1.56	2 4.48
Minimally invasive surgery	1 5.96	3 3.66	3.70
Miniature drug delivery injection system	5 1.42	2 3.90	1 4.67
Micro artificial organs	3.60	3.02	5 2.72
Articles for the disabled	0.51	(5) 1.85	0.45
Daily health parameters monitoring	3 4.55	1 5.90	3 4.14
Flexible chips	1.16	1.61	1.14
Body energy harvesting	0.11	1.32	0.16
Others	0.18	0.00	0.00

Page32

IF2	China	Japan	Korea
Intrusive testing	2 3.43	1.19	2 3.33
Minimally invasive surgery	 4.37 	3 2.83	4 2.78
Miniature drug delivery injection system	5 1.06	2.95	3.51
Micro artificial organs	4 2.67	4 2.34	5 2.08
Articles for the disabled	0.40	5 1.50	0.35
Daily health parameters monitoring	3 3.33	1 4.56	3 3.10
Flexible chips	0.89	1.20	0.86
Body energy harvesting	0.08	1.10	0.12
Others	0.13	0.00	0.00

Most important factors to increase the life expectancy of the population

- Drug development
 Rapid pathologic diagnosis
- Biomedical research \blacklozenge Daily health monitoring

For in vitro scenarios, most important MEMS applications are:

Biosensors \blacklozenge Biochemical analysis and disease diagnosis

For wearable/implantable scenarios, most important MEMS applications

are:

- Intrusive testing
- Miniature drug delivery injection system \blacklozenge Daily health parameters monitoring
- Minimally invasive surgery

أحيضا بالتطنف أواليون وتبعالهم

Page34

MEMS in other

Which applications of MEMS do you think are the most important for the development of the national economy, including automotive and healthcare? (Choose 3 items)

Percentage	China	Japan	Korea
Vehicles	1 60.0%	3 34.1%	2 48.4%
Medical equipment	2 52.7%	1 51.2%	1 49.2%
Personal computers and smartphones	18.2%	7.3%	17.2%
Wearable devices	30.9%	1 51.2%	3 47.7%
Aerospace	18.2%	2.4%	6.3%
The Internet of things	5 21.8%	334.1%	20.3%
Robots	4 27.3%	334.1%	4 32.8%
Virtual Reality/Augmented Reality	9.1%	14.6%	5 22.7%
Industrial Internet	5 21.8%	7.3%	8.6%
Body/Environmental energy harvesting	14.5%	19.5%	7.0%
Analytical instruments	1.8%	4.9%	7.0%
Others	3.6%	0.0%	0.0%

Others: chemical pharmaceutical, etc.

المخاطنة أباريه بتباكم

Page35

SUTVEY How important do you think the cooperation between China, Japan and South Korea in MEMS technology is?

Percentage	China	Japan	Korea
Very important	23.6%	31.7%	16.4%
Relatively important	63.6%	24.4%	40.6%
Generally important	10.9%	31.7%	27.3%
Not very important	1.8%	2.4%	7.8%
Not important at all	0.0%	2.4%	0.0%
Unanswered	0.0%	7.3%	7.8%

المحفار العلقان أبالعا بالعاقم

Page36

SUTVEY In what areas do you think China, Japan and Korea should cooperate in MEMS technology? (Multiple choice)

Percentage	China	Japan	Korea
Fundamental research	54.5%	61.0%	55.5%
Prototype design	40.0%	22.0%	14.1%
Advanced process development	63.6%	14.6%	16.4%
Professional personnel training	52.7%	19.5%	24.2%
Industry standard establishment	34.5%	53.7%	52.3%

Comments and

suggestions

China

- Traditional medicine in East Asia is of the same origin. As the world gradually enters an aging society, I expect researchers in related fields to make concerted efforts to contribute to human health.
- Technical cooperation between the three countries is common, but deep cooperation is still faced with many difficulties.
- Japan
- ✓ Cooperation in the basic research is very important.
- International cooperation between Japan, China and South Korea is extremely important, but due to the speculation of each country, the situation has been quite difficult. The Engineering Academy of Japan also needs a new approach for trilateral cooperation.

ومحاولة والمتحد أواليون وتعطيتهم

Comments and

Page38

suggestions

- It was difficult to choose the answers for me who do not understand the technologies mentioned above.
- Korea
- With regard to cars, I think it is important to concentrate on electric cars. \checkmark
- I wish you a way of mutual cooperation. \checkmark
- It is hoped that practical cooperation measures can be established to \checkmark produce tangible results among the National Academies of Engineering of the three countries.
- I think Korea, China, and Japan should cooperate in a future-oriented way. \checkmark
- For scholars like me, who have retired from my career for more than 10 \checkmark years, it would be better to collect judgments about my long experiences and feelings rather than items such as the current status of technology or the presentation of specific technology contents فالبالع باختير أواليون وتعقاقه

Comments and

suggestions

- Due to changes in the international environment, technological cooperation with Japan and China needs to be carried out carefully, unlike in the past. It is necessary to raise awareness of the situation in which significant sensitive issues are emerging regarding the leakage of national technology and secrets.
- We hope that actual cooperation projects between Korea, China and Japan will be created as a follow-up project to the Korea-China daily survey and the meeting.
- The application of MEMS is very diverse and in order to cooperate between Korea, China, and Japan, a consensus should be formed first, and the easiest field of cooperation will be education and basic research.

خالها وينها والمتحد والمحالي والمح

Constant of Thanks for your attention

CHERRY -

